
Using AI to Drive Software Test Automation
Test automation today is difficult, time-consuming, and error-prone. It’s difficult because it
requires a highly skilled automation engineer to write, edit and maintain scripts. It’s time-
consuming because making sure those scripts work, and maintaining those scripts as the
application changes, typically takes about a man-hour per script.
Further, application complexity is increasing faster than test teams and tools can keep up.
Client/server computing has given way to service-oriented architecture and web services,
which has given way to web applications and N-tier computing, which is in the early stages of
giving way to microservices.
Further, all of these application architectures are actually blends of everything that came
earlier. Few applications follow a strict architecture, instead using code and sometimes entire
systems from previous applications.
Then there is the larger issue of whether the automation
scripts represent what users actually do on the application.
While testers sometimes work from user personas and define
a prospective workflow, both represent only a guess as to the
nature of the user and the path of his or her goals and
activities in the application. Real users won’t and don’t interact
in an application only in the way test scripts are written.
Today, test scripts are typically recorded or written by testers, who go through multiple steps
within the application. Often these steps are meant to exercise individual pages and
functions rather than replicate a user workflow. That can be a decent start, but errors often
show up only when tasks are performed in a specific sequence.
Newer development methodologies are also uncovering the limits of test automation. Both
agile methodologies and the newer DevOps trends demand fast and high-quality automation
to keep up with an ever-increasing pace of rapid development and continuous deployment.
The technical difficulty of automation today, coupled with the need to constantly modify test
scripts to keep up with the software, prevents testing from being as responsive, fast and
thorough as it needs to be.
The end result is that automation, despite its potential in improving quality and accelerating
test, often fails to live up to that potential because of limitations with existing automation tools
and techniques, most of which have their grounding in 30-year-old methodologies. Many
organizations that attempt test automation often give up or relegate it to a small role because
it doesn’t turn out to be a silver bullet. Those that are successful with test automation end up
devoting a large amount of human resources to it.
To be effective, automated testing must accurately represent how real users interact with the
application, and the ability to rapidly create test cases based on those steps. Further, these
test cases have to be easily maintainable and changeable as the application changes.
Representing actual use improves software quality by focusing on the workflows that matter.

Enter AI and Machine Learning
Fortunately, this type of problem is amenable to a solution using artificial intelligence (AI) and
machine learning. Testing teams are turning to AI-based solutions such as Appvance IQ, not
to replace human testing processes, but to dramatically augment them. In particular, AI
scripting largely replaces the mundane tasks of manual scripting, with a knock-on benefit of
reducing the need for manual testing. This allows team members to focus on important areas

TECHNICAL BRIEF

To be effective, automated
testing must accurately

represent how real users
interact with the application.

TECHNICAL BRIEF
Using AI to Drive Software Test Automation

that today often get ignored: e.g., application usability, flow, layout, test analysis etc. In short,
allowing an AI system to “write” test code automatically can be a godsend to an organization.

Inputs to AI Scripting
To automatically generate tests that are meaningful, one must consider the inputs that would
be required. At a minimum, and assuming server level tests (such as HTTP or API tests), six
functional areas of inquiry must be addressed.
1. How do users use or will use an application?
2. What are the expected results and/or responses? How do we know a pass versus fail?
3. How does the application function and what is its purpose?
4. How are requests formed so they will not be rejected by the server, even if the server is

now a different server (for instance the QA server instead of the production server)?
5. What data is required for valid forms (such as credentials)?
6. How can correlations be created to take server responses and place them in future

requests (such as session ID’s)?
7. How can changes in a new build versus the old build be handled?
The problem is not a simple one since the AI scripting system must have sources for, or the
technology to create, all of this data, then learn from the data, then utilize that knowledge to
create new tests. It is complex and a machine-learning big-data challenge of the highest
order. And of course, you must also repurpose those use cases into different types of tests
(functional, performance, security) based on their functions and goals.
Fortunately, virtually all organizations collect data on
their applications, as well as the application environment
in which they run, such as the server and network. While
often ignored, this operational data can be quite useful
as an AI learning source. For some shops, it may be as simple as server and web logs. Others
may have third-party tools, such as Sumo Logic, Dynatrace or Splunk, that collect
supplementary data or do analyses on existing application and network data.
This data, which records limited information (e.g., unique user IDs, their flow through the
application, and results returned, latency, “thought” time during navigation) can be used by
machine learning to build a model of user activity. Even better, it can be used for more than
that, as we shall see.
Response codes may also be captured, so the AI scripting system can rapidly flag bugs found
by the system but unreported by users. These can be used to create tests to repeat those
bugs, and then run them to validate the current state. This “rapid bug ID and Test” capability
can allow teams to repeat the conditions that caused the failure in the first place, and then
turn around fixes in minutes, rather than hours or days.
For question #2, you can also look to server logs to understand expected results based on
prior results, or the user can add specific validation for any page or response broadly across
thousands of use cases. Validations can also be data-driven, in that they can employ test data
to deliver results that accurately reflect user activities.
For #3 and #4, it’s possible to employ several methods to better understand the way the
application works and how to form requests and expected responses. For instance, Appvance
IQ’s AI Scripting uses algorithms to create an Application Blueprint that attempts to locate

 Page � of �2 3

Operational data can be quite
useful as an AI learning source.

TECHNICAL BRIEF
Using AI to Drive Software Test Automation

every possible (and practical) page or response in an application. This teaches the system
about the application as well as proper request formatting.
For #5, valid test input data (e.g., credentials or user data) is provided by the test team or by a
connected database. The system should easily make use of the data in the right positions.
For #6, the system must create errors on hidden runs to search for appropriate matching
substitutes that would pass or correlate based on a score of likelihood of matching the
requirements for a future request. Automatic correlation is required in order to send accepted
requests to the server across thousands or millions of requests, often in parallel.
To address #7, Appvance engineers developed a system to automatically note flow changes
in a new build versus prior builds, and then apply that learning to script generation. Thus, for
many or most cases, script maintenance becomes labor-free and completely machine driven.

Applicability of AI Driven Test Automation
AI-driven test generation is applicable to many application types: websites, web apps,
backend services, mobile apps and IOT devices, as well as various test types such as
functional, performance and security. As long as there is user and application data, it can be
applied almost anywhere.
The result is an AI-driven test automation system
that creates and executes hundreds or thousands
of user-driven scripts on-demand, based upon
learning from various rich data sources, and attain
extremely high test-coverage with minimal human
intervention. Further, these portfolios of AI created scripts can drive functional tests and data-
driven load tests. In short, AI scripting reduces the labor cost of script generation to zero.
Essentially, the Appvance IQ’s AI scripting is an automatic code generator. It’s smart code in a
very bound case (testing), but code nevertheless. No need for Selenium or Java or QTP or
whatever your scripting language of choice would have been. Because, manually scripting
will become used only in limited corner cases, allowing the AI system to handle the vast
majority of code coverage and generating tests which far better represent actual user
interactions.

AI Driven Test Automation Is Available Now
Test automation doesn’t have to be as difficult as it is today. By utilizing the information
already available, test automation teams can bring AI technology in house to accelerate test
script development and simplify the script life cycle.
Appvance IQ is available now. Let’s talk soon about identifying an attractive application it can
test as a proof of concept.

 Page � of �3 3

Appvance, Inc.
3080 Olcott Street

Santa Clara, CA 95054
 Appvance.ai

Appvance is the leader in AI-driven testing, which is revolutionizing
how software testing is performed. The company’s premier product is
Appvance IQ™, the world’s first AI-driven, unified test automation
system. AIQ empowers enterprises to improve the quality,
performance and security of their apps, while transforming the
efficiency and output of their testing teams.

© 2023 Appvance, Inc. All rights reserved.

AI-driven test automation creates
and executes thousands of user-

driven scripts on-demand.

http://www.appvance.ai
http://www.appvance.ai

